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Statistical optimization and geometric inference
in computer vision

By Kenichi Kanatani

Department of Computer Science, Gunma University,
Kiryu, Gunma 376-9515, Japan

This paper gives a mathematical formulation to the computer vision task of infer-
ring three-dimensional structures of a scene based on image data and geometric con-
straints. Introducing a statistical model of image noise, I define a geometric model
as a manifold determined by the constraints and view the problem as model fitting. I
then present a general mathematical framework for proving optimality of estimation,
deriving optimal schemes, and selecting appropriate models. Finally, I illustrate the
theory by applying it to curve fitting and structure from motion.

Keywords: accuracy bound; AIC; Cramer–Rao lower bound; curve fitting;
model selection; structure from motion

1. Introduction

The goal of computer vision is to infer three-dimensional structures of the scene
from image data. The key that makes this possible is our prior knowledge about the
environment. This knowledge takes the form of constraints: if something is to be seen
in the image, the image data should satisfy a certain relationship; if another thing
is to be seen, another relationship should hold. Let us call a particular constraint a
(geometric) model. The inference takes the following two stages:

1. Model selection. We decide which model is to be adopted from among all pos-
sibilities.

2. Model fitting. We obtain a detailed description of the selected model by opti-
mally fitting it to the data.

In this paper, I give a mathematical formulation to these tasks in very general
terms and apply it to curve fitting and structure from motion as typical computer
vision problems.

2. Model fitting

Suppose we observe m-dimensional vectors a1, . . . ,aN constrained to be in an m′-
dimensional manifold A ∈ Rm, which we call the data space. We write

aα = āα + ∆aα, (2.1)

where āα is the position supposedly observed in the absence of noise. We regard
the noise term ∆aα as a Gaussian random variable of mean 0 and covariance matrix
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1304 K. Kanatani

V [aα], independent for each α. Since each aα is constrained to be in A, its covariance
matrix

V [aα] = E[∆aα∆aT
α ] (2.2)

is singular (E[ · ] denotes expectation, and ‘T’ denotes transpose). We assume that it
is a positive semi-definite symmetric matrix of rank m′ whose range coincides with
the tangent space Tāα(A) to the data space A at āα. We also assume that V [aα] is
known only up to scale, i.e. we decompose it into the noise level ε and the normalized
covariance matrix V0[aα] in the form

V [aα] = ε2V0[aα], (2.3)

and assume that V0[aα] (which may be different for each datum) is known, but ε is
unknown.

Suppose the true values āα, α = 1, . . . , N , are known to satisfy a set of equations
parametrized by an n-dimensional vector u. We assume that the domain of the
vector u is an n′-dimensional manifold U ⊂ Rn, which we call the parameter space.
Let F (k)(a,u): Rm × Rn → R, k = 1, . . . , L, be smooth functions of arguments
a ∈ Rm and u ∈ Rn, and consider the following problem:

Problem 1. Estimate the value u ∈ U that satisfies

F (k)(āα,u) = 0, k = 1, . . . , L, (2.4)

from the noisy data aα ∈ A, α = 1, . . . , N .

The L equations F (k)(a,u) = 0, k = 1, . . . , L, need not be algebraically indepen-
dent with respect to the argument a; we call the number r of independent equations
the rank of the constraint. We assume that these L equations define a manifold
S ⊂ A of codimension r parametrized by u ∈ U ; we call S the geometric model of
equation (2.4). Then, problem 1 can be rephrased as the following geometric model
fitting :

Problem 2. Given noisy data {aα} ∈ A, let the model S ⊂ A pass through their
true positions {āα} ∈ A exactly by adjusting the parameter u.

3. Theoretical accuracy bound

Let û be an arbitrary unbiased estimator of u. The unbiasedness is usually defined
by E[û] = u. However, the parameter space U is generally ‘curved’. Hence, although
û ∈ U , we have E[û] 6∈ U in general. Here, we define the unbiasedness by

E[P Uu (û− u)] = 0, (3.1)

where P Uu is the projection matrix onto the tangent space Tu(U) to the parameter
space U at u. Define the a posteriori covariance matrix of the estimator û by

V [û] = P Uu E[(û− u)(û− u)T]P Uu , (3.2)

which defines a positive semi-definite symmetric matrix whose range is restricted to
be in Tu(U). The estimator û is assumed to be such that P Uu (û− u) distributes in
all directions in Tu(U) so that the range of V [û] coincides with Tu(U), having rank
n′ (= the dimension of U).
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Statistical optimization and geometric inference 1305

Let ∇u(·) and ∇a(·) denote the n-dimensional vector (∂(·)/∂u1, . . . , ∂(·)/∂un)T

and the m-dimensional vector (∂(·)/∂a1, . . . , ∂(·)/∂am)T, respectively. The following
inequality can be proved (Kanatani 1996a):

V [û] � ε2
( N∑
α=1

L∑
k,l=1

W̄ (kl)
α (P Uu∇uF̄ (k)

α )(P Uu∇uF̄ (l)
α )T

)−
, (3.3)

(W̄ (kl)
α ) = ((∇aF̄ (k)

α , V0[aα]∇aF̄ (l)
α ))−. (3.4)

Here, ( · )− denotes the (Moore–Penrose) generalized inverse;∇uF̄ (k)
α and∇aF̄ (k)

α are
the abbreviations of ∇uF (k)(āα,u) and ∇aF (k)(āα,u), respectively. The relation A
� B for symmetric matrices A and B means that A−B is a positive semi-definite
matrix. Equation (3.4) means that W̄ (kl)

α is the (kl) element of the generalized inverse
of the matrix whose (kl) element is defined by the expression inside ( · )−. It can be
proved that (W̄ (kl)

α ) is a positive semi-definite symmetric matrix of rank r (Kanatani
1996a).

Kanatani (1996a) called equation (3.3) the Cramer–Rao inequality and the right-
hand side the Cramer–Rao lower bound because equation (3.3) is derived solely from
the unbiasedness condition (3.1) and the definition (3.2) of V [û] just as the usual
Cramer–Rao lower bound. Equation (3.3) is a special case of a more general form
for a non-Gaussian noise distribution, for which the Fisher information matrix plays
the role of the covariance matrix (Kanatani 1996a).

Remark 1. In statistics, a (statistical) model is a mechanism that predicts future
observation: it consists of a deterministic part which specifies the structure of the phe-
nomenon and a random fluctuation part which accounts for all factors not modelled
in the deterministic part. Mathematically, the problem is to estimate the parameters
involved in a probability density by observing data sampled from it. Problem 1 does
not fit in this framework: the structure is given as an implicit relationship in the
form of equation (2.4). So, the usual Cramer–Rao lower bound does not apply here.

4. Computation methods

The following three are the most widely used methods for solving problem 1:

1. Minimal approach. Equation (2.4) gives r constraints on u, which has n′ degrees
of freedom, so we observe dn′/re data, substitute them for their true values in
equation (2.4), and solve the resulting simultaneous equations:

F (k)(aα,u) = 0, k = 1, . . . , L, α = 1, . . . , dn′/re. (4.1)

2. Least-squares approach. We observe N (> dn′/re) data and compute the value
of u that minimizes

JLS =
N∑
α=1

L∑
k=1

W (k)
α F (k)(aα,u)2 (4.2)

for appropriate weights W (k)
α (> 0).
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Figure 1. Datum aα is projected onto manifold S.

3. Maximum likelihood approach. We compute the values {āα} that minimize

J =
N∑
α=1

(aα − āα, V0[aα]−(aα − āα)), (4.3)

subject to the constraint (2.4); the value u is chosen so as to minimize J (we
denote the inner product of vectors a and b by (a, b)).

Remark 2. The summand in equation (4.3) is known as the squared Mahalanobis
distance of aα from āα with respect to V0[aα]. Kanatani (1996a) called minimization
of equation (4.3) MLE (maximum likelihood estimation) because the likelihood that
the data {aα} are observed is const.× e−J/2ε

2
under our assumption; minimizing J

is equivalent to maximizing the likelihood.
Remark 3. Many variants exist for the first two methods. For example, we may

regard u as an unconstrained variable. This usually simplifies the computation, but
the resulting value of u does not necessarily satisfy the constraint u ∈ U (the decom-
posability condition). So, we project it onto the manifold U by some criterion. This
approach is called the linearization technique.

The MLE approach is evidently the most preferable. The minimum approach is
sensitive to noise, though it can be modified into an outlier detection scheme like
RANSAC (Fischler & Bolles 1981) by incorporating random sampling and voting.
The least-squares approach may be robust, but there is no guarantee that the result-
ing solution is close to the true value. In fact, the solution is usually statistically
biased whatever weights W (kl)

α are used (Kanatani 1996a). In contrast, the MLE
solution can be shown to be optimal in the sense we describe shortly.

5. Optimal model fitting

In order to minimize equation (4.3), we first fix the value of u and compute the values
{āα} that minimize J . This is equivalent to ‘projecting’ each datum aα onto a point
âα in S optimally measured in the Mahalanobis distance (figure 1). The first-order
solution obtained by ignoring terms of O(ε2) is given in the form

âα = aα − V0[aα]
L∑

k,l=1

W (kl)
α F (k)

α ∇aF (l)
α . (5.1)
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Here, F (k)
α and ∇aF (k)

α are the abbreviations of F (k)(aα,u) and ∇aF (k)(aα,u),
respectively; W (kl)

α is defined by replacing in equation (3.4) the true value āα by
the corresponding data value aα and the generalized inverse ( · · · )− by the rank-
constrained generalized inverse ( · · · )−r , by which we mean the operation performed
by replacing all the eigenvalues of · · · other than the r largest ones by zero in the
canonical form and computing the (Moore–Penrose) generalized inverse (Kanatani
1996a). This operation is necessary for preventing numerical instability, because the
operand approaches a singular matrix of rank r in the limit aα → āα.

Substituting equation (5.1) for āα in equation (4.3), we can express J in terms of
u alone in the form

J =
N∑
α=1

L∑
k,l=1

W (kl)
α F (k)

α F (l)
α . (5.2)

Here, the ‘weight’ W (kl)
α is not a constant but a function of u. We call the value

û that minimizes equation (5.2) the MLE estimator, and the minimum value of J
the residual, which we denote by Ĵ . It can be proved that Ĵ/ε2 is subject to a χ2

distribution with rN − n′ degrees of freedom in the first order (Kanatani 1996a).
Hence, an unbiased estimator of the squared noise level ε2 is obtained in the form

ε̂2 =
Ĵ

rN − n′ . (5.3)

It can be shown that MLE in this form is optimal in the sense that the covariance
matrix of the resulting solution attains the bound (3.3) in the first order (i.e. if
terms of O(ε4) are ignored) (Kanatani 1996a). This corresponds to the well-known
fact that MLE in traditional statistics is optimal in that the resulting solution attains
the Cramer–Rao lower bound asymptotically for repeated observations (i.e. if terms
of O(1/n2) are ignored for n observations).

Remark 4. We should distinguish the ‘number of observations’ from the ‘number
of data’. Suppose we make n observations and obtain N data for each observation;
all N data are assumed to be samples from a probability density of N variables that
involves unknown parameters which we want to estimate. In traditional statistics,
MLE is optimal in the limit n→∞.

Remark 5. In problem 1, the unknown parameters that characterize the proba-
bility density of the data are the true values {āα} of the data {aα} and the value
u that parametrizes the constraint. Hence, as the number of data increases, the
number of unknowns increases at the same rate. This means that if we observe an
increased number of data, they are still ‘one’ sample from a new probability density
that involves an increased number of unknowns. In other words, the number of obser-
vations is always n = 1, however large the number of data N is. Thus, asymptotic
analysis in the limit N →∞ does not make sense for problem 1.

Remark 6. Suppose we hypothetically repeat observations of the same values
{āα} n times and obtain n sets of data {a(i)

α }, i = 1, . . . , n, α = 1, . . . , N . If we take
the average

aα =
n∑
i=1

a(i)
α /n,

the resulting values {aα} have errors of O(1/
√
n) times the original errors. In other

words, increasing the number of (hypothetical) observations n means effectively
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reducing the noise level ε. Thus, it is natural that the optimality of MLE, which
holds asymptotically (i.e. n → ∞) in traditional statistics, should hold for small
noise (i.e. ε→ 0) for problem 1.

6. Model selection

If there are multiple candidates of geometric models S1, S2, . . . , we should choose the
‘best’ one for observed data {aα}. But how can we evaluate the ‘goodness’ of a model
S? First of all, a good model should explain the data {aα} well, which implies that
the residual Ĵ should be small. Since Ĵ/ε2 is subject to a χ2 distribution with rN−n′
degrees of freedom, the residual becomes smaller as n′ becomes larger. In particular,
the residual is zero in general if the model S has more than rN free parameters,
meaning that we can make S pass through all the data points by adjusting the
parameters. Such an artificial model cannot be regarded as a good model, because
it only explains the current data {aα} which happen to be observed; there is no
guarantee that it could explain the data if the noise occurred differently.

This observation suggests that the ‘goodness’ of a model can be measured by its
‘predicting capability’ (Akaike 1974). Let {a∗α} be the future data that have the
same probability distribution as the current data {aα} but are independent of {aα}.
Consider the residual J∗ for the maximum likelihood estimators {âα} ∈ Ŝ, which
are computed from the current data {aα}, with respect to the future data {a∗α}:

J∗ =
N∑
α=1

(a∗α − âα, V0[aα]−(a∗α − âα)). (6.1)

A model S is expected to have high prediction capability if J∗ is small. Put differently,
we are ‘validating’ the optimal estimate Ŝ of S by measuring its discrepancy from
data yet to be observed. It can be shown that Ĵ is smaller than J∗ by 2(pN + n′)ε2
in expectation (Kanatani 1996a). So, we define the geometric information criterion,
or the geometric Akaike information criterion (AIC), by

AIC(S) = Ĵ + 2(pN + n′)ε2, (6.2)

and use it as a measure of the goodness of the model.
Remark 7. The most distinctive characteristic of the geometric AIC is the fact

that the number N of data, which does not appear in the usual AIC, explicitly
appears in the expression; the traditional AIC contains, other than the residual,
only the number of the model parameters. This is because, as we pointed out earlier,
the number of data in traditional statistics means the number of ‘observations’, while
the number N of the data {aα} means the number of the parameters {āα} (often
called nuisance parameters) of the model; the number of observations is always one.
This fact results in the following features of the geometric AIC:

1. The degree of freedom n′ of the model has no significant effect for the geometric
AIC if the number N of data is large, whereas it plays a dominant role in the
usual AIC.

2. The dimension p of the model manifold plays a dominant role in the geometric
AIC, while no such geometric concepts are involved in the usual AIC.
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7. Noise estimation

In order to compute the geometric AIC, we need to estimate the noise level ε appro-
priately. This is obvious; distinguishing one model from another is meaningless if the
noise level is high, while a small difference between the residuals gives a strong clue
if the noise level is low. However, estimating the noise level a priori is in general very
difficult. Here, we resolve this difficulty by focusing on the inclusion relationship of
the models.

Let S1 be a model of dimension p1 and codimension r1 with n′1 degrees of freedom,
and S2 a model of dimension p2 and codimension r2 with n′2 degrees of freedom. Let
Ĵ1 and Ĵ2 be their respective residuals. Suppose model S2 is obtained by adding an
additional constraint to model S1. We say that model S2 is stronger than model S1,
or model S1 is weaker than model S2, and write

S2 � S1. (7.1)

If model S1 is correct, the squared noise level ε2 is estimated by equation (5.3).
Substituting it into the expression for the geometric AIC, we obtain

AIC(S1) = Ĵ1 +
2(p1N + n′1)
r1N − n′1

Ĵ1, AIC(S2) = Ĵ2 +
2(p2N + n′2)
r1N − n′1

Ĵ1. (7.2)

Since the geometric AIC estimates the expected sum of squared Mahalanobis dis-
tances, the ratio of the deviations from the two models can be evaluated by

K =

√
AIC(S2)
AIC(S1)

=

√
r1N − n′1

(2p1 + r1)N + n′1

(
Ĵ2

Ĵ1
+

2(p2N + n′2)
r1N − n′1

)
. (7.3)

This quantity measures how good model S2 is compared with model S1: if K < 1,
model S2 is expected to have more predicting capability.

Remark 8. Our approach for noise estimation is very different from that in statis-
tics, where the noise level is estimated model by model in such a way that the AIC
is minimized, which is equivalent to MLE. If the noise level is so estimated and sub-
stituted back into the AIC expression, the residual term is effectively replaced by its
logarithm. We cannot do that in our problem for two reasons:

1. In statistics, noise is a characteristic of the model, which specifies how deter-
ministic causes are separated from random effects. Since noise characteristics
are model-dependent, it makes sense to estimate them model by model. In our
problem, noise is a characteristic of the devices and data-processing operations
involved and is independent of the models we are comparing. Hence, it should
be estimated once for all the models.

2. MLE of the noise level produces a very poor estimator for our problem. In
fact, if we estimate ε2 by MLE, its expectation is approximately rε2/m′, e.g.
it is ε2/2 for curve fitting in two dimensions and ε2/3 for surface fitting in
three dimensions. This does not occur in traditional statistics, because MLE
estimators rapidly approach their true values as the number of observations
increases, i.e. as the number of data increases. In our problem, the number
of observations is always one; increasing the number of data has no effect in
improving the accuracy of estimating ε2. In fact, the optimality of MLE can
be established only in the limit ε2 → 0.
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8. Curve fitting

Given N points (x1, y1), . . . , (xN , yN ) in an image, consider the problem of fitting
to them a curve

F (x, y,u) = 0 (8.1)

parametrized by a vector u. Let (x̄α, ȳα) be the true position of point (xα, yα), i.e.
the position that would supposedly be observed if the image were ideal and the
detection operation were accurate. We write

xα = x̄α + ∆xα, yα = ȳα + ∆yα, (8.2)

and regard (∆xα,∆yα) as a two-dimensional random variable subject to a Gaussian
distribution, independent for each α, of mean (0, 0) and variance-covariance

V [xα, yα] =
(

E[∆x2
α] E[∆xα∆yα]

E[∆yα∆xα] E[∆y2
α]

)
, (8.3)

which we decompose into an unknown noise level ε and a known normalized covari-
ance matrix V0[xα, yα] in the form of equation (2.3).

Curve fitting has customarily been defined as finding a curve that passes as closely
to the data points as possible. In contrast, we state the problem as follows:

Problem 3. Estimate the value u that satisfies

F (x̄α, ȳα,u) = 0, α = 1, . . . , N, (8.4)

from the noisy data {(xα, yα)}.
For this problem, inequality (3.3) takes the following form:

V [û] � ε2
( N∑
α=1

(∇uF̄α)(∇uF̄α)T

(∇F̄α, V0[xα, yα]∇F̄α)

)−1

. (8.5)

This bound is attained in the first order by MLE; we minimize

J =
N∑
α=1

F 2
α

(∇Fα, V0[xα, yα]∇Fα)
. (8.6)

This criterion is a generalization of the techniques suggested by Bolle & Verumi
(1991), Taubin (1991), and Taubin et al. (1994), who tacitly assumed homogeneous
and isotropic noise.

The covariance matrix V [û] of the MLE estimator û can be evaluated in the first
order by substituting the data {(xα, yα)} and the estimate û for the true values
{(x̄α, ȳα)} and u, respectively, in equation (8.5). Since V [û] is a positive definite
symmetric matrix, it has the spectral decomposition in the form

V [û] =
n′∑
i=1

λiuiu
T
i , (8.7)

where λi is the ith largest eigenvalue of V [û], and ui is the corresponding unit
eigenvector. The vector u1 indicates the orientation along which deviation is most
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likely to occur;
√
λ1 is its standard deviation. Thus, the following two vectors can be

regarded as the most typical instances of the parameter u:

u+ = û+
√
λ1u1, u− = û−

√
λ1u1. (8.8)

It follows that we can visualize the reliability of the optimal fit by displaying two
curves F (x, y,u+) = 0 and F (x, y,u−) = 0, which we call the primary deviation pair
for the optimal fit F (x, y, û) = 0 (Kanazawa & Kanatani 1995a, b).

Typical examples of the above procedure include line fitting (Kanazawa & Kana-
tani 1996a), conic fitting (Kanazawa & Kanatani 1996b), and fitting a plane to range
data (Kanazawa & Kanatani 1995c). The bound (8.5) plays an important role in
evaluating the accuracy of camera calibration using a planar grid pattern (Kanatani
1992, 1993a; Kanatani & Maruyama 1996).

9. Renormalization

Typical curves to fit are a line Ax+ By + C = 0 and a conic Ax2 + 2Bxy + Cy2 +
2(Dx+ Ey) + F = 0. In most cases, curves to fit have the form

(a,u) = 0, (9.1)

where u is a parameter vector to estimate and a is a vector whose elements are
polynomial functions of x and y: for line fitting, we have u = (A,B,C)T and a =
(x, y, 1)T; for conic fitting, we have

u = (A,B,C,D,E, F )T and a = (x2, 2xy, y2, 2x, 2y, 1)T.

From the variances and covariances E[∆x2], E[∆y2], E[∆x∆y] of the noise terms
∆x and ∆y, we can compute variances and covariances of any polynomial functions
of x and y. In fact, if we let x1 = x and x2 = y and put E[∆xi∆xj ] = Σij , we can
reduce higher-order moments to expressions in Σij by using the well-known property
for Gaussian random variables:

E[∆xi∆xj∆xk] = 0,
E[∆xi∆xj∆xk∆xl] = ΣijΣkl +ΣikΣjl +ΣilΣjk,

E[∆xi∆xj∆xk∆xl∆xm] = 0,
E[∆xi∆xj∆xk∆xl∆xm∆xn] = · · · .

 (9.2)

Thus, we can obtain the covariance matrix V [a] of the vector a as a function of x
and y.

Since the absolute magnitude of the vector u in equation (9.1) is arbitrary, we
can normalize it into a unit vector. Hence, if a and u are n-dimensional vectors,
the parameter space U is a unit (n− 1)-sphere ‖u‖ = 1 in Rn. The data space A is
two-dimensional, since a is parametrized by x and y. It follows the covariance matrix
V [a] has dimension n but has rank 2.

In this formalism, an optimal solution can be computed semi-analytically by a
procedure called renormalization (Kanatani 1994a; Kanazawa & Kanatani 1995a, c).
For each datum aα, we decompose V [aα] into an unknown noise level ε and a known
normalized covariance matrix V0[aα] in the form of equation (2.3). The renormaliza-
tion procedure goes as follows:

1. Let c = 0 and Wα = 1, α = 1, . . . , N .
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2. Compute the following matrices:

M =
1
N

N∑
α=1

Wαaαa
T
α , N =

1
N

N∑
α=1

WαV0[aα]. (9.3)

3. Compute the smallest eigenvalue λ of the matrix

M̂ = M − cN , (9.4)

and the corresponding unit eigenvector u.

4. If λ ≈ 0, return u, c, and M . Otherwise, update c and Wα as follows:

c← c+
λ

(u,Nu)
, Wα ← 1

(u, V0[aα]u)
. (9.5)

5. Go back to Step 2.

The convergence is very fast; usually three or four iterations result in sufficient accu-
racy. Let û be the returned value of u. It can be shown that this estimator has the
same accuracy as the MLE estimator in the first order (Kanatani 1996a). From this
fact, we can obtain an unbiased estimator of the squared noise level ε2 in the form

ε̂2 =
c

1− 2/N
. (9.6)

The covariance matrix of the estimator n̂ is estimated by

V [û] =
ε̂2

N
(M̂)−n−1. (9.7)

The rank-constrained generalized inverse operation ( · · · )−n−1 is necessary because
the smallest eigenvalue of M̂ may not be strictly 0 if the renormalization iterations
are prematurely terminated.

10. Three-dimensional motion analysis

Define an XY Z camera coordinate system in such a way that the origin O is at
the centre of the lens and the Z-axis is in the direction of the optical axis. With
an appropriate scaling, the image plane can be identified with the plane Z = 1, on
which an xy image coordinate system is defined in such a way that the origin o is
on the Z-axis and the x- and y-axes are parallel to the X- and Y -axes, respectively.
Suppose the camera moves to a position defined by translating the first camera by
vector h and rotating it around the centre of the lens by matrix R; we call {h,R}
the motion parameters (figure 2).

Let (xα, yα), α = 1, . . . , N , be the image coordinates of N feature points before the
motion, and (x′α, y

′
α), α = 1, . . . , N , be those after the motion. We use the following

three-dimensional vectors to represent them:

xα = (xα, yα, 1)T, x′α = (x′α, y
′
α, 1)T. (10.1)

We regard these as Gaussian random variables and denote their covariance matrices
by V [xα] and V [x′α]. Since the third components of ∆xα and ∆x′α are identically
0, V [xα] and V [x′α] are singular matrices of rank 2. Assuming that the covariance
matrices are known only up to scale, we decompose them into the noise level ε and
the normalized covariance matrices V0[xα] and V0[x′α] in the form of equation (2.3).
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Figure 2. Geometry of camera motion.

(a) General model

Since vectors {x,x′} represent the same point in the scene if and only if three
vectors x, Rx′, and h are coplanar, we obtain the epipolar equation (Faugeras 1993;
Kanatani 1993a; Weng et al. 1993a)

|x,h,Rx′| = 0, (10.2)

where |a, b, c| denotes the scalar triple product of vectors a, b, and c. This equa-
tion defines a model S of codimension 1 in the four-dimensional data space X =
{(x, y, z, x′, y′, z′)|z = 1, z′ = 1} ∈ R6. The scale of the translation h is indeter-
minate, so we normalize it into ‖h‖ = 1. As a result, the parameter space U is a
five-dimensional manifold in R12; it is the collection of points

(h1, h2, h3, R11, R12, . . . , R33)

such that (hi) is a unit vector and (Rij) is a rotation matrix.

1. Errors in translation. Since translations constitute an additive group, we mea-
sure the deviation of the computed value ĥ from its true value h by the ‘dif-
ference’ ĥ− h. Both ĥ and h are normalized to a unit vector, so they are both
on a unit sphere. Assuming that error is small, we identify the domain of the
error ∆h with the tangent plane to the sphere at h and define the error of
translation by

∆h = Ph(ĥ− h), (10.3)

where Ph (= I −hhT) is the projection matrix onto a subspace perpendicular
to h (I denotes the unit matrix).

2. Errors in rotation. Since rotations constitute a multiplicative group, we mea-
sure the deviation of the computed rotation R̂ from the true rotation R by
the ‘quotient’ R̂R−1, which is a small rotation. Let l and ∆Ω be its axis (unit
vector) and angle of rotation, respectively. We define the error of rotation by

∆Ω = ∆Ωl. (10.4)
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From these observations, we define the covariance matrices of the motion param-
eters {ĥ, R̂} as follows (Kanatani 1993a):

V [ĥ] = E[∆h∆hT], V [ĥ, R̂] = E[∆h∆ΩT],

V [R̂, ĥ] = E[∆Ω∆hT], V [R̂] = E[∆Ω∆ΩT].

}
(10.5)

For this representation, inequality (3.3) has the following form:(
V [ĥ] V [ĥ, R̂]

V [R̂, ĥ] V [R̂]

)
� ε2

(∑N
α=1 W̄αp̄αp̄

T
α

∑N
α=1 W̄αp̄αq̄

T
α∑N

α=1 W̄αq̄αp̄
T
α

∑N
α=1 W̄αq̄αq̄

T
α

)−
, (10.6)

p̄α = x̄α ×Rx̄′α, q̄α = (x̄α,Rx̄α′)h− (h,Rx̄′α)x̄α, (10.7)

W̄α =
1

(h×Rx̄′α, V0[xα](h×Rx̄′α)) + (h× x̄α,RV0[x′α]RT(h× x̄α))
. (10.8)

This bound is attained in the first order by MLE; we minimize the following function
(Kanatani 1994b, 1996a):

J =
N∑
α=1

|xα,h,Rx′α|2
(h×Rx̄′α, V0[xα](h×Rx̄′α)) + (h× x̄α,RV0[x′α]RT(h× x̄α))

. (10.9)

Direct minimization of this function requires numerical search (Kanatani 1993b;
Weng et al. 1993b), but the computation can be simplified by combining the lineariza-
tion technique with renormalization and an optimal correction scheme (Kanatani
1994b).

(b) Planar surface model

Consider a planar surface in the scene. Let n be its unit surface normal, and d its
distance from the origin O (positive in the direction of n); we call {n, d} the surface
parameters. A pair {x,x′} is a projection of a feature point on that plane if and only
if

x′ ×Ax = 0, (10.10)

where A is a matrix that determines the projective transformation (or homography)
of the image and has the following form (Faugeras 1993; Kanatani 1993a; Longuet-
Higgins 1986; Maybank 1993; Weng et al. 1991):

A = RT(hnT − dI). (10.11)

Equation (10.10) defines a model SΠ of codimension 2 in the four-dimensional data
space X = {(x, y, z, x′, y′, z′)|z = 1, z′ = 1} ∈ R6. Since the scale of the homography
A is indeterminate, we may normalize it to ‖A‖ = 1. So, the parameter space U
is an eight-dimensional manifold in R9. An optimal solution of the surface param-
eters {n, d} and the motion parameters {h,R} in the sense of MLE is obtained by
minimizing the following function (Kanatani 1996a; Kanatani & Takeda 1995):

JΠ =
N∑
α=1

(x′α ×Axα,Wαx
′
α ×Axα). (10.12)
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Wα = (x′α ×AV0[xα]AT × x′α + (Axα)× V0[x′α]× (Axα))−2 . (10.13)

The product v × T of a vector v and a matrix T is defined to be the matrix whose
columns are the vector products of v and the three columns of T . For a vector
v and a matrix T , the symbol v × T × v is an abbreviation of v × T (v × I)T.
The renormalization procedure can be applied to compute the homography A that
minimizes equation (10.12) (Kanatani 1996a; Kanatani & Takeda 1995). The surface
parameters {n, d} and the motion parameters {h, R} are analytically computed
from the resulting matrix A (Kanatani 1993a; Longuet-Higgins 1986; Weng et al.
1991).

(c) Pure rotation model

No three-dimensional information can be obtained if the camera motion is pure
rotation around the centre of the lens; all we can estimate is the amount of the
camera rotation R. A pair {x,x′} is a projection of the same feature point if and
only if

x×Rx′ = 0. (10.14)

This equation defines a model SR of codimension 2 in the four-dimensional data
space X = {(x, y, z, x′, y′, z′)|z = 1, z′ = 1} ∈ R6. The parameter space U is a three-
dimensional manifold defined by all rotation matrices in R9. An optimal solution of
R in the sense of MLE is obtained by minimizing the following function (Kanatani
1996a):

JR =
N∑
α=1

(xα ×Rx′α,Wαxα ×Rx′α), (10.15)

Wα = ((Rx′α)× V0[xα]× (Rx′α) + xα ×RV0[x′α]RT × xα)−2 . (10.16)

(d) Model selection

Equation (10.10) implies the epipolar equation (10.2). Equation (10.13) is obtained
from equation (10.10) by letting d = 1 and h = 0 in equation (10.11). Hence, SR �
SΠ � S. Thus, the following tests can be done (Kanatani 1996a, b):

1. Planarity test. The object is judged to be planar if

KΠ =

√
N − 5
7N + 5

(
ĴΠ

Ĵ
+

4N + 16
N − 5

)
< 1. (10.17)

2. Rotation test. The camera motion is judged to be a pure rotation if

KR =

√
N − 5
7N + 5

(
ĴR

Ĵ
+

4N + 6
N − 5

)
< 1. (10.18)
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Figure 3. (a) A two-dimensional manifold with three degrees of freedom can be fitted. (b) A
two-dimensional manifold with eight degrees of freedom can be fitted. (c) A three-dimensional
manifold with five degrees of freedom can be fitted.

(e) Self-evaluation

In order to do robust three-dimensional reconstruction, the camera must be dis-
placed over a long distance so that the resulting disparity is sufficiently large. As
the disparity increases, however, it is increasingly difficult to match feature points
over the two images due to possible occlusions and illumination changes. Feature
matching becomes easier as the disparity decreases; for each feature point, only a
small neighbourhood needs to be searched. It is therefore desirable to keep the cam-
era displacement minimum in such a way that the resulting disparity is sufficient for
reliable three-dimensional reconstruction. This can be done by measuring the ‘good-
ness’ of the images by the values (KR,KΠ) defined by equations (10.17) and (10.18)
if we note the following (figure 3):

1. Small motion. If the camera motion is small, the data points are concentrated
near a two-dimensional manifold in the four-dimensional data space X . As a
result, we can robustly fit the rotation model SR, but we cannot robustly fit
SΠ or S, so we are unable to perceive any three-dimensional structure of the
scene.

2. Intermediate motion. As the camera motion increases, the data spread more in
X , so we can robustly fit the planar surface model SΠ , but we cannot robustly
fit S. As a result, the scene we can perceive is merely a planar surface.
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3. Large motion. If the camera motion is sufficiently large, the distribution of the
data is sufficiently three-dimensional in X , so we can robustly fit the general
model S and thereby perceive the full three-dimensional structure of the scene.

11. Concluding remarks

We have given a mathematical formulation to the computer vision task of inferring
three-dimensional structures of the scene based on image data and geometric con-
straints. Introducing a statistical model of image noise, we defined a geometric model
as a manifold determined by the constraints and viewed the problem as model fit-
ting. We then presented a general mathematical framework for proving optimality
of estimation, deriving optimal schemes, and selecting appropriate models. Finally,
we illustrated our theory by applying it to curve fitting and structure from motion.
Geometric model selection based on the geometric AIC has many other applications
than are described here—inferring true two-dimensional structures from distorted
shapes (Kanatani 1997; Triono & Kanatani 1996) and inferring three-dimensional
structures by stereo vision (Kanazawa & Kanatani 1997), for instance.

This work was in part supported by the Ministry of Education, Science, Sports and Culture,
Japan under a Grant in Aid for Scientific Research C(2) (No. 09680352).
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Discussion

R. Cipolla (University of Cambridge, UK ). Can Professor Kanatani’s method han-
dle points on the critical surface?

K. Kanatani. Yes, it can. My theory deals with data with noise, and in the presence
of noise data points are almost always not on a critical surface. Doing 3D reconstruc-
tion from points on a critical surface is like fitting a planar surface to collinear points
in three dimensions. In the presence of noise, there always exists a solution, but it
is very unreliable. And the degree of unreliability can be evaluated by my geometric
AIC, which compares the goodness measures of two models: general model versus
degeneracy in the data configuration.

R. I. Hartley (GE Corporate Research and Development, Niskayuna, NY, USA).
Why choose to use the Cramer–Rao lower bound rather than some other bounds
known in statistics?

K. Kanatani. The problem of geometric fitting is in many respects very different
from traditional statistical estimation problems, for which various lower bounds are
known. For geometric fitting, no such bounds have been known, so I derived one by
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modifying the Cramer–Rao lower bound to fit in my geometric fitting framework.
This bound is attained by maximum likelihood solution in the first order. Of course,
there could be other bounds better in higher orders, but according to my experi-
ments my bound is very tight, so I don’t think we should worry about higher-order
differences.

W. Triggs (INRIA, France). In Professor Kanatani’s estimation of the fundamental
matrix did he normalize the data first? Also, is a full statistical error the best thing
to minimize?

K. Kanatani. First, about data normalization. Since my statistical theory deals with
noise in the physical space, data can be represented in any way you like; no matter
how they are represented, the solution always has the same meaning, as it should. In
my treatment, I represent a point in the image by a three-dimensional vector starting
from the focal point towards that point in the image plane, and I normalize it so
that its z-component is 1. Of course, you can use other normalizations, but you must
give its covariance matrix/tensor so that it is compatible with your normalization; if
you change the normalization, you also have to change its covariance matrix/tensor
accordingly, thereby guaranteeing the solution to be representation-free.

Next, about the minimizing criterion. According to my experiments, minimiz-
ing full statistical errors definitely improves accuracy over minimizing algebraic dis-
tances. Richard Hartley asserted in his talk that minimizing algebraic distances was
advantageous because it was computationally efficient, yet the difference in accu-
racy from minimizing full statistical errors was very small. But we must be careful
when we talk about ‘accuracy’. Take the fundamental matrix F for example. If we
measure ‖F − F̄‖ (F̄ is the true value of F ), the difference between statistical error
minimization and algebraic distance minimization is very small indeed. But if we
compute the 3D motion from F , the difference is very large, as I illustrated in my
talk. The same thing happens for conic fitting, too: although the difference ‖Q− Q̄‖
is very small, the curve represented by the matrix Q can deviate significantly from
the curve represented by the matrix Q̄. So, we cannot be content with the fact that
errors in matrix representation are very small. Very slight as the improvement may
be, we should minimize full statistical errors; the difference in the end result is often
very striking.

Richard Hartley (this volume) also asserts that minimizing full statistical error
was time-consuming when constraints were involved, as in the case of the funda-
mental matrix: one has to introduce minimal parametrization so as to satisfy the
constraints and then do numerical search in the (minimal) parameter space. This
is time-consuming indeed. However, my proposed approach is different. We first do
minimization without regard to the constraints, which is usually very efficient, and
compute an initial solution and its covariance matrix/tensor . Then, we correct the
solution optimally according to that covariance matrix/tensor . This correction stage
can be done by repeated linear computation. It can be confirmed by many experi-
ments that the resulting accuracy is comparable to the parametrized minimization,
yet the computation is several orders faster. Thus, there is no reason to avoid full
statistical error minimization.

A. Fitzgibbon (Department of Engineering, University of Oxford, UK ). Does
Professor Kanatani’s method reduce to minimizing the exact geometric distance in
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the case of small isotropic noise? Also, is it a valid assumption to assume that noise
is small?

K. Kanatani. Yes, what I call ‘maximum likelihood estimation’ reduces to minimiz-
ing the sum of squares of distances over which the data points must be displaced so
as to satisfy the constraint, provided the probability density of the noise is a function
of the square distance, which is the case if the noise is subject to an isotropic and
identical Gaussian distribution. And I introduced various first-order approximations
for simplifying the equations, assuming that noise is small. According to my experi-
ments, this assumption is very valid as long as we are dealing with image and sensor
data, as opposed to data in medicine, biology, agriculture, sociology, economics, etc.,
which traditional statistics concerns.

R. I. Hartley. I would like to comment on the previous question. From my own
experiments I have found that observed residual error seems to be quite close to linear
in the injected noise. This suggests that surface representing correct measurements
is well approximated locally by its tangent plane. This suggests that the small-noise
assumption is justified.

O. Faugeras (INRIA, France). There have been some recent advances in estimat-
ing quantities such as R under fairly severe noise. Does Professor Kanatani not think
we need a theory for describing random processes on manifolds under all noise con-
ditions?

K. Kanatani. I do not see strong evidence yet that we need higher-order theories.
Although my algorithms have been derived by introducing first-order approxima-
tions, the resulting algorithms can be applied to data with very large noise, and the
result is usually fairly good. In order to obtain a better method, we need to exploit
the particular mathematical structure and noise characteristics of the problem in
question, introducing additional parameters that describe higher-order effects. This
means that the analysis is inevitably less general. Such problem-dependent higher-
order theories may have advantages over general first-order theories in some situa-
tions.
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